Synthesis, structure and redox behaviour of facial $\left[\mathrm{Re}^{\mathrm{III}} \mathbf{L}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$ and its stereoretentive conversion to $\left[\operatorname{Re}^{\mathrm{IV}} \mathbf{L}^{\prime}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$ via metal promoted aldimine \longrightarrow amide oxidation ($\mathbf{L}=$ pyridine-2-aldimine; $\mathbf{L}^{\prime}=$ pyridine-2-carboxamide)

Sibaprasad Bhattacharyya, Sangeeta Banerjee, Bimal Kumar Dirghangi, Mahua Menon and Animesh Chakravorty*

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India

Received 11th August 1998, Accepted 29th October 1998

The reaction of mer- $\left[\mathrm{Re}{ }^{\mathrm{III}} \mathrm{L}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}\right] \mathbf{2}$ with PPh_{3} in benzene has afforded bluish violet fac- $\left[\mathrm{Re}^{\mathrm{III}} \mathrm{L}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right] \mathbf{1}$, where L is the Schiff base of pyridine-2-carbaldehyde and the substituted aniline $p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}(\mathrm{X}=\mathrm{H}, \mathrm{Me}$, OMe or $\mathrm{Cl})$. Geometrical preferences are rationalized in terms of the electronic nature of the ligands OPPh_{3} (σ - and π-donor), PPh_{3} (σ-donor and π-acceptor) and L (σ-donor and π-acceptor). The cyclic voltammetric $E_{1 / 2}$ values of $\mathbf{1}$ lie near $0.6 \mathrm{~V}\left(\mathrm{Re}^{\mathrm{IV}}-\mathrm{Re}^{\mathrm{II}}\right)$ and $-0.6 \mathrm{~V}\left(\mathrm{Re}^{\mathrm{II}}-\mathrm{Re}^{\mathrm{II}}\right)$. Electrooxidation of $\mathbf{1}$ at $1.0 \mathrm{~V} v s$. SCE in wet acetonitrile affords yellow fac- $\left[\operatorname{Re}^{\mathrm{IV}} \mathrm{L}^{\prime}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right] \mathbf{3}$ which is also obtainable via oxidation by dilute nitric acid (L^{\prime} is a monoanionic pyridine-2carboxamide). Complex 3 displays $\mathrm{Re}^{\mathrm{IV}}-\mathrm{Re}^{\mathrm{III}}$ and $\mathrm{Re}^{\mathrm{V}}-\mathrm{Re}^{\mathrm{IV}}$ couples near -0.2 V and 1.4 V respectively reflecting superior stabilization of the rhenium(Iv) state by the amide ligand. The X-ray structures of two representative complexes of type $\mathbf{1}$ and $\mathbf{3}$ have revealed the presence of severely distorted and facially configured $\mathrm{RePN}_{2} \mathrm{Cl}_{3}$ coordination spheres. The average $\mathrm{Re}-\mathrm{Cl}$ distance is lower by $0.06 \AA$ in $\mathbf{3}$ due to contraction of the metal radius upon oxidation. The Re-P length is however larger by $0.1 \AA$ in $\mathbf{3}$ signifying a weakening of Re-P back-bonding.

The rhenium chemistry of Schiff bases of pyridine-2carbaldehyde is under scrutiny in this laboratory. Facile oxygen-atom-transfer, metal-mediated ligand oxidation and stabilization of unusual rhenium moieties are among the notable features that have so far been documented. ${ }^{1-6}$ In this work we disclose a spontaneous geometrical transformation associated with ligand substitution. The reaction has afforded a family of pyridine-2-aldimine chelates of trivalent rhenium incorporating phosphine coordination. The species are redox active and undergo facile aldimine \longrightarrow amide oxidation. The structure and properties of the present complexes and their oxidized derivatives are described.

Results and discussion

Synthesis of fac-[$\left.\mathrm{ReL}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right] 1$
Four pyridine-2-aldimine ligands ($\mathrm{L}^{1}-\mathrm{L}^{4}$; general abbreviation is L), differing in the X substituent have been utilized. The complexes have facial geometry (see below) and are formed upon reacting the meridional phosphine oxide complexes of type $\left[\operatorname{ReL}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}\right]$ 2, ${ }^{1-3}$ with PPh_{3}, in boiling benzene,

1a $\left[\operatorname{ReL}^{1}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right](\mathrm{X}=\mathrm{H})$
1b $\left[\mathrm{ReL}^{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right](\mathrm{X}=\mathrm{Me})$
1c $\left[\operatorname{ReL}{ }^{3}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right](\mathrm{X}=\mathrm{OMe})$
1d $\left[\operatorname{ReL}^{4}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right](\mathrm{X}=\mathrm{Cl})$

$2\left[\mathrm{ReL}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}\right]$
equation (1). The reaction of mer- $\left[\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with L also furnishes 1 , equation (2), but in poorer yield.

$$
\begin{align*}
\text { mer }-\left[\operatorname{ReL}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}\right]+ & \mathrm{PPh}_{3} \longrightarrow \\
\text { fac- }\left[\mathrm{ReL}^{\longrightarrow}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]+ & \mathrm{OPPh}_{3} \tag{1}
\end{align*}
$$

Selected spectral and magnetic characterization data for the complexes are listed in Tables 1 and 2. The magnetic moments $\left(\approx 2 \mu_{\mathrm{B}}\right.$, Table 1) are lower than the spin-only value for the $\mathrm{t}_{2 \mathrm{~g}}{ }^{4}$ (assuming idealised octahedral geometry) configuration which is not unusual for trivalent rhenium. ${ }^{7}$ The paramagnetically shifted ${ }^{1} \mathrm{H}$ NMR signals of $\mathbf{1}$ have been assigned (Table 2) on the basis of signal intensity, spin-spin structure and previous work. ${ }^{8-10}$ A selected portion of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 b}$ is displayed in Fig. 1.

Structure

The X-ray structure of $f a c$ - $\left[\operatorname{ReL}^{1}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$ 1a has been determined. A molecular view is shown in Fig. 2 and selected bond parameters are listed in Table 3. The aldimine and phosphine ligands are facially disposed and so are the chloride ligands, forming a severely distorted octahedral $\mathrm{RePN}_{2} \mathrm{Cl}_{3}$ coordination sphere. The chelate ring along with the pyridine ring and $\mathrm{Cl}(2), \mathrm{Cl}(3)$ atoms constitute a good plane (mean deviation 0.05 \AA) to which the pendent phenyl ring makes a dihedral angle of 50.1°.

The X-ray structures of a few $\mathrm{Re}^{\text {III }}-\mathrm{PPh}_{3}$ complexes are known. ${ }^{8,11,12}$ Only one of these has the ReCl_{3} moiety but in a meridional configuration. ${ }^{8}$ To the best of our knowledge $\mathbf{1 a}$ is the first structurally characterized PPh_{3} complex having facial ReCl_{3} disposition. The Re- P distance, 2.463(2) \AA in 1a is normal. ${ }^{8,12}$

Table 1 Electronic spectral, ${ }^{a} \mathrm{IR}^{b}$ and magnetic moment data at 298 K

	UV/VIS $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{-\mathbf{3}} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$	IR v / cm^{-1}	$\mu_{\text {eff }} / \mu_{\mathrm{B}}$

${ }^{a}$ In dichloromethane. ${ }^{b}$ In KBr disc; $v(\mathrm{R}-\mathrm{Cl}) 310-335, v(\mathrm{C}=\mathrm{N}) 1590-1600, v\left(\mathrm{PPh}_{3}\right) 510,700, v(\mathrm{C}=\mathrm{O}) 1600-1640 \mathrm{~cm}^{-1}$. ${ }^{c}$ Shoulder.

Table $2{ }^{1} \mathrm{H}$ NMR data in CDCl_{3}

	δ		
	$\mathbf{1 a}$	$\mathbf{1 b}$	$\mathbf{1 d}$
$o-\mathrm{H}(\mathrm{d})$	13.80	13.70	13.50
$m-\mathrm{H}(\mathrm{t})$	8.96	8.96	8.90
$p-\mathrm{H}(\mathrm{t})$	8.73	8.74	8.76
$1-\mathrm{H}(\mathrm{d})$	25.70	24.80	26.70
$2-\mathrm{H}(\mathrm{t})$	-11.40	-11.00	-11.90
$3-\mathrm{H}(\mathrm{t})$	5.23	5.27	5.29
$4-\mathrm{H}(\mathrm{d})$	5.00	4.60	4.70
$6-\mathrm{H}(\mathrm{s})$	-46.00	-47.60	-43.60
$8,12-\mathrm{H}(\mathrm{d})$	21.35	20.9	21.00
$9,11-\mathrm{H}(\mathrm{d})$	$11.85(\mathrm{t})$	11.44	11.62
$10-\mathrm{H}(\mathrm{t})$	7.70	-	-
$\mathrm{CH} \mathrm{H}_{3}(\mathrm{~s})$	-	3.64	-

Tetramethylsilane was used as internal standard; $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet .

Fig. 1 A part of the proton NMR spectrum of $f a c-\left[\operatorname{ReL}^{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right] \mathbf{1 b}$ in CDCl_{3} solution; $o-\mathrm{H}, m$ - H and $p-\mathrm{H}$ refer respectively to ortho, meta and para protons of PPh_{3}.

Geometrical preference

The striking geometrical difference between $\mathbf{1}$ and $\mathbf{2}$ is believed to be of electronic origin. In $\mathbf{1}, \mathrm{PPh}_{3}$ is a π-accepting ligand, the acceptor orbital being a mixture of $3 \mathrm{~d}_{\pi}$ and $\mathrm{P}-\mathrm{C} \sigma^{*}$ components. ${ }^{13}$ The L ligand is also π-accepting due to the α-diimine

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complexes 1a and 3d

	$\mathbf{1 a}$	3d
$\mathrm{Re}-\mathrm{N}(1)$	$2.103(5)$	$2.123(7)$
$\mathrm{Re}-\mathrm{N}(2)$	$2.083(5)$	$2.061(7)$
$\mathrm{Re}-\mathrm{Cl}(1)$	$2.407(2)$	$2.331(3)$
$\mathrm{Re}-\mathrm{Cl}(2)$	$2.350(2)$	$2.300(3)$
$\mathrm{Re}-\mathrm{Cl}(3)$	$2.379(2)$	$2.345(3)$
$\mathrm{Re}-\mathrm{P}$	$2.463(2)$	$2.549(3)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.371(8)$	$1.336(12)$
$\mathrm{N}(2)-\mathrm{C}(6)$	$1.309(8)$	$1.349(12)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.408(9)$	$1.524(13)$
$\mathrm{O}(1)-\mathrm{C}(6)$	-	$1.217(11)$
$\mathrm{N}(2)-\mathrm{Re}-\mathrm{N}(1)$	$75.9(2)$	$78.2(3)$
$\mathrm{N}(2)-\mathrm{Re}-\mathrm{Cl}(2)$	$99.5(2)$	$95.1(2)$
$\mathrm{N}(1)-\mathrm{Re}-\mathrm{Cl}(2)$	$174.1(2)$	$173.2(2)$
$\mathrm{N}(2)-\mathrm{Re}-\mathrm{Cl}(1)$	$87.0(2)$	$90.2(2)$
$\mathrm{N}(2)-\mathrm{Re}-\mathrm{Cl}(3)$	$167.0(2)$	$170.1(2)$
$\mathrm{N}(1)-\mathrm{Re}-\mathrm{Cl}(1)$	$86.3(2)$	$86.0(2)$
$\mathrm{N}(1)-\mathrm{Re}-\mathrm{Cl}(3)$	$91.3(2)$	$92.0(2)$
$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{Cl}(3)$	$93.18(7)$	$94.77(11)$
$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{Cl}(1)$	$89.74(7)$	$94.42(11)$
$\mathrm{Cl}(3)-\mathrm{Re}-\mathrm{Cl}(1)$	$90.46(8)$	$90.53(11)$
$\mathrm{N}(2)-\mathrm{Re}-\mathrm{P}$	$93.7(2)$	$93.7(2)$
$\mathrm{N}(1)-\mathrm{Re}-\mathrm{P}$	$97.0(2)$	$90.7(2)$
$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{P}$	$86.97(7)$	$89.37(10)$
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{P}$	$176.70(6)$	$174.29(9)$
$\mathrm{Cl}(3)-\mathrm{Re}-\mathrm{P}$	$89.55(7)$	$84.89(10)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Re}$	$115.8(4)$	$114.5(6)$
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Re}$	$116.6(5)$	$118.2(6)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$113.5(6)$	$116.3(8)$
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{N}(2)$	-	$127.1(9)$

Fig. 2 A view of $\left[\operatorname{ReL}^{1}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$ 1a; the atoms are represented by their 30% thermal probability ellipsoids.
function $(-\mathrm{N}=\mathrm{C}-\mathrm{C}=\mathrm{N}-)$., ${ }^{2,14}$ Trivalent rhenium is prone to backbonding. ${ }^{15}$ Assuming idealised octahedral geometry this bonding has $\mathrm{t}_{2 \mathrm{~g}}(\mathrm{Re}) \longrightarrow \pi(\mathrm{P})$ and $\mathrm{t}_{2 \mathrm{~g}}(\mathrm{Re}) \longrightarrow \pi^{*}(\mathrm{~L})$ components in 1. Back-bonding is maximized when the acceptor ligands are facially disposed so that competition between ligands for identical metal orbitals is minimal.

Table 4 Cyclic voltammetric formal potential ${ }^{a}$ at 298 K

Compound	$E_{2}^{1} / \mathrm{V}\left(\Delta E_{\mathrm{p}} / \mathrm{mV}\right)$
$\mathbf{1 a}$	$-0.60(100), 0.65(80)$
$\mathbf{1 b}$	$-0.61(100), 0.62(80)$
$\mathbf{1} \mathbf{c}$	$-0.64(100), 0.58(80)$
$\mathbf{1 d}$	$-0.59(100), 0.68(80)$
$\mathbf{3 a}$	$-0.10(80), 1.28(80)$
$\mathbf{3 b}$	$-0.15(80), 1.19(80)$
$\mathbf{3 c}$	$-0.18(80), 1.10(80)$
$\mathbf{3 d}$	$-0.06(80), 1.35(80)$

${ }^{a}$ Solvent, dichloromethane; scan rate, $50 \mathrm{mV} \mathrm{s}{ }^{-1} ; E_{\frac{1}{2}}=1 / 2\left(E_{\mathrm{pa}}+E_{\mathrm{pc}}\right)$ where E_{pa} and E_{pc} are anodic and cathodic peak potentials respectively; $\Delta E_{\mathrm{p}}=E_{\mathrm{pc}}-E_{\mathrm{pa}}$. Reference electrode, SCE. The concerned couples are $\mathbf{1}_{-1^{-}}\left(\operatorname{Re}^{\text {piII }}-\operatorname{Re}^{\text {pa }}\right), \mathbf{1}^{+}-\mathbf{1}\left(\operatorname{Re}^{\mathrm{IV}}-\operatorname{Re}^{\mathrm{III}}\right), \mathbf{3}-\mathbf{3}^{-}\left(\operatorname{Re}^{\mathrm{IV}}-\operatorname{Re}^{\mathrm{III}}\right), \mathbf{3}^{+}-\mathbf{3}\left(\operatorname{Re}^{\mathrm{V}}-\operatorname{Re}^{\mathrm{IV}}\right)$.

The meridional geometry is expected to be favoured by steric as well as electrostatic factors. In the case of $\mathbf{1}$ these advantages are more than offset by the superior back-bonding of the facial configuration. This does not apply to $\left[\mathrm{ReL}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}\right]$ since OPPh_{3} is purely a donor in both σ and π senses. Hence its geometry is logically meridional. It is instructive to compare the metal-ligand bond distances of $\mathbf{1 a}$ with those of mer$\left[\operatorname{ReL}^{2}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}\right] .{ }^{2}$ The average $\mathrm{Re}-\mathrm{Cl}$ length of two complexes are nearly equal ($2.37-2.38 \AA$). However the Re-N lengths in 1a are ca. $0.06 \AA$ longer than those in the phosphine oxide complex where L^{2} alone is available for back-bonding $\left[\mathrm{t}_{2 \mathrm{~g}}(\mathrm{Re}) \longrightarrow\right.$ $\left.\pi^{*}\left(\mathrm{~L}^{2}\right)\right]$.

The geometrical selectivity in $\mathbf{1}$ and $\mathbf{2}$ is strong and exclusive. In no case have isomers been observed. It is noteworthy that $\left[\operatorname{ReL}(\mathrm{O}) \mathrm{Cl}_{3}\right]^{3}$ and $\left[\operatorname{ReL}(\mathrm{NAr}) \mathrm{Cl}_{3}\right]^{5,6}$ are meridional, the O and NAr ligands being pure donors like OPPh_{3}. Upon reacting 1 with aromatic amines $\left(\mathrm{ArNH}_{2}\right)$ in benzene solution in air, facile and quantitative transformation to mer- $\left[\mathrm{ReL}(\mathrm{NAr}) \mathrm{Cl}_{3}\right]$ occurs. This reaction ($\mathrm{fac} \longrightarrow m e r$) represents a reversal of the geometrical change $(\mathrm{mer} \longrightarrow f a c)$ characterizing the reaction of equation (1).

Metal redox: formation of $\left[\operatorname{ReL}^{\prime}\left(\mathbf{P P h}_{3}\right) \mathbf{C l}_{3}\right] \mathbf{3}$

The $\mathrm{fac}-\left[\mathrm{ReL}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$ complexes are electroactive in dichloromethane solution displaying two quasi-reversible one-electron responses in the range -0.5 to 0.7 V vs. SCE. Reduction potential data are listed in Table 4. The responses are assigned to the $\operatorname{Re}^{\mathrm{IV}}-\operatorname{Re}^{\mathrm{III}}\left(E_{1 / 2} \approx 0.6 \mathrm{~V}\right)$ and $\mathrm{Re}^{\mathrm{II}}-\operatorname{Re}^{\mathrm{II}}\left(E_{1 / 2} \approx-0.6 \mathrm{~V}\right)$ couples. In 2 the $\mathrm{Re}^{\mathrm{IV}}-\mathrm{Re}^{\text {III }}$ couple occurs at ca. $0.3 \mathrm{~V}^{3}$ Thus the trivalent state of rhenium is more difficult to oxidize in $\mathbf{1}$ than in $\mathbf{2}$. This is consistent with the presence of phosphine back-bonding in $\mathbf{1}$.

The red oxidized complex $\left[\mathrm{Re}^{\mathrm{IV}} \mathrm{L}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]^{+} \mathbf{1}^{+}$can be generated in solution by coulometric oxidation of $\mathbf{1}$ in dry acetonitrile at 1.0 V . It reacts spontaneously with added water affording the amide complex $f a c-\left[\mathrm{Re}^{\mathrm{IV}} \mathrm{L}^{\prime}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$ 3, equation (3). The facial geometry is conserved in the conversion of

$$
\begin{align*}
& 3\left[\mathrm{Re}^{\mathrm{IV}} \mathrm{~L}^{\left.\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]^{+}+\mathrm{H}_{2} \mathrm{O} \longrightarrow}\right. \\
& \text { fac- }\left[\mathrm{Re}^{\mathrm{IV}} \mathrm{~L}^{\prime}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]+2 \text { fac- }\left[\mathrm{Re}^{\mathrm{III}} \mathrm{~L}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]+3 \mathrm{H}^{+} \tag{3}
\end{align*}
$$

$\mathbf{1} \longrightarrow \mathbf{3}$, vide infra. When coulometry is performed in moist acetonitrile the regenerated $f a c-\left[\mathrm{Re}^{\mathrm{II}} \mathrm{L}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$ complex, equation (3), is reoxidized and in this manner the whole of $\mathbf{1}$ is finally converted to 3 . The total coulomb count at full conversion corresponds to the transfer of three electrons. From the electrolytic solution $\mathbf{3}$ can be isolated in excellent yields.

These findings encouraged us to explore the chemical oxidation of $\mathbf{1}$ to $\mathbf{3}$. Aqueous nitric acid and hydrogen peroxide were indeed found to be very effective. The most convenient synthesis of $\mathbf{3}$ is based on aqueous nitric acid oxidation of $\mathbf{1}$ in acetonitrile solution.

Aldimine \longrightarrow amide conversion in oxidizing aqueous environments has previously been observed ${ }^{2}$ in the cases of 2

Fig. 3 A view of $\left[\mathrm{ReL}^{4}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$ 3d; the atoms are represented by their 30% thermal probability ellipsoids.

$$
\begin{aligned}
& \text { 3a }\left[\operatorname{ReL}^{1}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right](\mathrm{X}=\mathrm{H}) \\
& \text { 3b }\left[\operatorname{ReL}^{2}\left(\mathrm{PP}_{3}\right) \mathrm{Cl}_{3}\right](\mathrm{X}=\mathrm{Me}) \\
& \text { 3c }\left[\operatorname{ReL}^{3^{3}}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right] \quad(\mathrm{X}=\mathrm{OMe}) \\
& \text { 3d }\left[\operatorname{ReL}^{4}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right] \quad(\mathrm{X}=\mathrm{Cl})
\end{aligned}
$$

and $m e r-\left[\operatorname{ReL}(N A r) \mathrm{Cl}_{3}\right] .{ }^{5,6}$ Rate studies on $\mathbf{2}^{\mathbf{3}}$ and on a ruthenium system ${ }^{16}$ have demonstrated that the reaction proceeds by the addition of a molecule of water to the aldimine function polarized by metal oxidation. In the present case the oxidized metal is rhenium(IV) as in $\mathbf{1}^{+}$. Rapid oxidation of the corresponding water adduct $\mathbf{4}$ via induced transfer to two electrons ${ }^{17}$ associated with proton dissociation, can afford 3.

Spectral and magnetic data for $f a c-\left[\mathrm{Re}^{\mathrm{IV}} \mathrm{L}^{\prime}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right] 3$ are listed in Table 1. The magnetic moments are lower ${ }^{3}$ than the $\mathrm{t}_{2 \mathrm{~g}}{ }^{3}$ (assuming idealised octahedral geometry) spin-only value. Two strong amide stretches occur in the range $1600-1640 \mathrm{~cm}^{-1}$. In dichloromethane solution 3 displays two quasi-reversible cyclic voltammetric responses in the range of -0.2 to 1.4 V corresponding to the couples $\operatorname{Re}^{\mathrm{IV}}-\mathrm{Re}^{\mathrm{II}}\left(E_{1 / 2} \approx-0.2 \mathrm{~V}\right)$ and $\mathrm{Re}^{\mathrm{V}}-$ $\operatorname{Re}^{\mathrm{IV}}\left(E_{1 / 2} \approx 1.4 \mathrm{~V}\right)$ (Table 4). Thus the $\mathrm{Re}^{\mathrm{IV}}-\mathrm{Re}^{\mathrm{II}}$ couple moves to lower potential by $\sim 700 \mathrm{mV}$ in going from $\mathbf{1}$ to $\mathbf{3}$ reflecting the ease of $\mathrm{Re}^{\mathrm{II}}-\mathrm{Re}^{\mathrm{IV}}$ oxidation upon amide binding.
The facial geometry of 3 has been proven by structure determination of $\left[\mathrm{ReL}^{4}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right] \mathbf{3 d}$ (Fig. 3, Table 3). As in 1a the chelate ring, the pyridine ring and $\mathrm{Cl}(2), \mathrm{Cl}(3)$ atoms are coplanar (mean deviation $0.02 \AA$). The pendant aryl ring makes a dihedral angle of $68.9^{\circ}\left(50.1^{\circ}\right.$ in 1a) to the plane. The amide group $C(5) C(6) O(1) N(2)$ is nearly perfectly planar.

Contraction of the metal radius upon oxidation causes a $c a$. $0.06 \AA$ decrease in average $\mathrm{Re}-\mathrm{Cl}$ distances between $\mathbf{1 a}$ and $\mathbf{3 d}$. For comparison we note that between a similar phosphine
oxide pair both the $\mathrm{Re}-\mathrm{Cl}$ and $\mathrm{Re}-\mathrm{OPPh}_{3}$ (no back-bonding) bonds contract. ${ }^{2}$ In contrast the Re-P length increases by $0.1 \AA$ between 1a and 3d. This is primarily attributed to the weakening of $\mathrm{Re}-\mathrm{P}$ back-bonding upon metal oxidation. The residual interaction is, however sufficient to sustain facial geometry in $\mathbf{3}$ which fails to isomerise even on prolonged boiling in toluene.

Conclusion

The fac-[$\left.\mathrm{Re}^{\mathrm{III}} \mathrm{L}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right] \mathbf{1}$ family having a facially configured $\operatorname{RePN} \mathrm{N}_{2} \mathrm{Cl}_{3}$ coordination sphere has been synthesized via ligand displacement from mer- $\left[\mathrm{Re}^{\mathrm{III}} \mathrm{L}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}\right]$ 2. The facial geometry of $\mathbf{1}$ is a result of the optimization of $\mathrm{Re}-\mathrm{PPh}_{3}$ and $\mathrm{Re}-\mathrm{L}$ back-bonding. The electrochemical and chemical oxidation of $\mathbf{1}$ is stereoretentive and has furnished $f a c-\left[\mathrm{Re}^{\mathrm{IV}} \mathrm{L}^{\prime}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right] \mathbf{3}$ in which the rhenium(IV) state is stabilized by amide bonding. The Re- P back-bonding and bond length orders are respectively $\mathbf{1 > 3}$ and $\mathbf{1 < 3}$.

Experimental

Materials

$\left[\operatorname{ReL}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}\right],{ }^{3}\left[\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{18}$ and pyridine-2-aldimine ${ }^{19}$ were prepared by reported methods. The purification and drying of dichloromethane and acetonitrile for synthesis as well as for electrochemical work were done as described. ${ }^{20}$ Toluene and benzene were distilled over sodium before use. All other chemicals and solvents were of reagent grade and used as received.

Physical measurements

Spectra were recorded with the following equipment: electronic spectra, Hitachi 330 spectrophotometer; infrared spectra (KBr disc, 4000-300 cm^{-1}), Perkin-Elmer 783 spectrophotometer, proton NMR spectra were recorded on a Bruker FT 300 MHz spectrometer. Electrochemical measurements were done by using a PAR model 370-4 electrochemistry system as described. ${ }^{13 b}$ All experiments were performed at a platinum working electrode under a dinitrogen atmosphere, the supporting electrolyte being tetraethylammonium perchlorate. The potentials are referenced to the saturated calomel electrode (SCE) and are uncorrected for the junction contribution. Magnetic susceptibilities were measured on a PAR-155 vibrating sample magnetometer. Microanalyses were done by using a Perkin-Elmer 240C elemental analyser.

Syntheses

$\boldsymbol{f a c}-\left[\operatorname{Re}^{\mathrm{III}} \mathbf{L}\left(\mathbf{P P h}_{3}\right) \mathbf{C l}_{3}\right]$ 1. The complexes were prepared by the same general methods. Details are given for $\mathbf{1 b}\left(\mathrm{L}=\mathrm{L}^{2}\right)$.

To a pink solution of $m e r-\left[\operatorname{ReL}^{2}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}\right](100 \mathrm{mg}, 0.14$ $\mathrm{mmol})$ in dry benzene $\left(15 \mathrm{~cm}^{3}\right), \mathrm{PPh}_{3}(200 \mathrm{mg}, 0.75 \mathrm{mmol})$ was added and the mixture was heated to reflux under pure nitrogen for 1 h affording a violet solution which yielded crystalline fac$\left[\operatorname{ReL}^{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right](20 \mathrm{mg})$ upon cooling to room temperature. The complex was collected by filtration and the filtrate was stripped of solvent. The residue was dissolved in a small volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to chromatography on a silica gel column prepared in benzene. Upon elution with benzeneacetonitrile $(25: 1,15: 1$ and $10: 1)$ mer- $\left[\operatorname{ReL}^{2}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}\right](18$ $\mathrm{mg})$, mer- $\left[\operatorname{ReL}^{2}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Cl}_{3}\right](7 \mathrm{mg})$ and fac- $\left[\operatorname{ReL}^{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$ $(28 \mathrm{mg})$ were successively isolated. The total yield of bluish violet fac-[$\left.\operatorname{ReL}^{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$ is $48 \mathrm{mg}, 50 \%$.

The complex was also synthesized starting from a solution of $\left[\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right](100 \mathrm{mg}, 0.12 \mathrm{mmol})$ in dry benzene $\left(15 \mathrm{~cm}^{3}\right)$ containing $\mathrm{L}^{2}(29 \mathrm{mg}, 0.15 \mathrm{mmol})$. The mixture was heated to reflux under pure nitrogen for 1 h . The violet solution was stripped of solvent and the residue subjected to chromatography as described above. The yield of $f a c-\left[\operatorname{ReL}^{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$
was $37 \mathrm{mg}, 40 \%$ (Found: C, 48.95 ; H, 3.25; N, 3.70. Calc. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{2}$ PRe 1a: C, $48.87 ; \mathrm{H}, 3.39$; N, 3.80. Found: C, 48.68; $\mathrm{H}, 3.51$; N, 3.61. Calc. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{~N}_{2}$ PRe 1b: C, 49.56; H, 3.60; N, 3.73. Found: C, $48.40 ; \mathrm{H}, 3.35 ; \mathrm{N}, 3.50$. Calc. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{~N}_{2}$ OPRe 1c: C, 48.52; H, 3.52; N, 3.65. Found: C, $47.00 ; \mathrm{H}, 3.25 ; \mathrm{N}, 3.50$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{Cl}_{4} \mathrm{~N}_{2}$ PRe 1d: C, 46.69 ; H, 3.11; N, 3.63\%).
$\boldsymbol{f a c}-\left[\mathbf{R e}^{\mathrm{IV}} \mathbf{L}^{\prime}\left(\mathbf{P P h}_{3}\right) \mathbf{C l}_{3}\right]$ 3. The same general methods were used for all the complexes. The case of $\mathbf{3} \mathbf{b}\left(\mathrm{L}^{\prime}=\mathrm{L}^{2^{\prime}}\right)$ is detailed below.

A solution of $f a c-\left[\mathrm{Re}^{\mathrm{II}} \mathrm{L}^{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right](20 \mathrm{mg}, 0.027 \mathrm{mmol})$ in wet acetonitrile $\left(20 \mathrm{~cm}^{3}\right)$ containing tetraethylammonium perchlorate ($25 \mathrm{mg}, 0.11 \mathrm{mmol}$) was electrolyzed exhaustively under nitrogen at 1.0 V vs. SCE. The bluish violet solution changed to red and finally to yellow. The coulomb count corresponded to the transfer of three electrons, equation (4)

$$
\begin{align*}
f a c-\left[\mathrm{Re}^{\mathrm{III}} \mathrm{~L}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right] & \longrightarrow a c-\left[\mathrm{Re}^{\mathrm{IV}} \mathrm{~L}^{\prime}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]+3 \mathrm{H}^{+}+3 \mathrm{e}^{-}
\end{align*}
$$

(observed count, 7.25; calculated count for one electron, 2.45).

The electrolyzed solution was stripped of the solvent and the residue was washed thoroughly with hot water and then dried over $\mathrm{P}_{4} \mathrm{O}_{10}$, yielding pure yellow fac-[$\left.\operatorname{ReL}^{2^{\prime}}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$. The yield was $14 \mathrm{mg}, 72 \%$.

Chemical synthesis of the complex was achieved by oxidation of $f a c-\left[\operatorname{ReL}^{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right](50 \mathrm{mg}, 0.067 \mathrm{mmol})$ in acetonitrile (20 cm^{3}) by aqueous $\mathrm{HNO}_{3}\left(0.5 \mathrm{M}, 0.5 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 1 h at room temperature affording a yellow solution [hydrogen peroxide $\left(0.5 \mathrm{~cm}^{3}, 30 \%\right)$ requires 12 h stirring in an ice bath]. The solvent was removed and the residue washed and dried as above, yielding fac- $\left[\operatorname{ReL}^{2^{\prime}}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$. The yield was $40 \mathrm{mg}, 80 \%$ (Found: C, $47.80 ; \mathrm{H}, 3.25 ; \mathrm{N}, 3.60$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{Cl}_{3} \mathrm{~N}_{2}$ OPRe 3a: C, 47.89; H, 3.19; N, 3.73. Found: C, 48.80; H, 3.25; N, 3.50. Calc. for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{OPRe} 3 \mathrm{bb}$: C, 48.58; H, 3.40; N, 3.66. Found: C, $47.50 ; \mathrm{H}, 3.42 ; \mathrm{N}, 3.45$. Calc. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ PRe 3c: C, 47.59; H, 3.33; N, 3.58. Found: C, 46.00; H, 2.80; N, 3.65. Calc. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{Cl}_{4} \mathrm{~N}_{2}$ OPRe 3d: C, 45.79; H, 2.93; N, 3.56\%).

Conversion of fac- $\left[\operatorname{Re}^{\mathrm{III}} \mathrm{L}^{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right]$ to $m e r-\left[\operatorname{Re}^{\mathrm{V}} \mathbf{L}^{2}\left(\mathrm{NC}_{6} \mathbf{H}_{4} \mathbf{M e}\right)\right.$ Cl_{3}]

A solution of $f a c-\left[\operatorname{ReL}^{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right](50 \mathrm{mg}, 0.067 \mathrm{mmol})$ in toluene ($10 \mathrm{~cm}^{3}$) was heated to reflux for 1 h in the presence of p-toluidine ($35 \mathrm{mg}, 0.33 \mathrm{mmol}$). The violet solution was stripped of solvent and the residue was subjected to chromatography on a silica gel column using benzene-acetonitrile (15:1) as the eluent. The complex mer- $\left[\operatorname{ReL}^{2}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Cl}_{3}\right]$ was isolated (yield $35 \mathrm{mg}, 88 \%$) by removing the solvent.

Crystallography

Dark prismatic crystals of $\mathbf{1 a}$ and orange prismatic crystals of 3d were grown by slow diffusion of hexane into dichloromethane solutions of the respective complexes.

Cell parameters were determined by a least-squares fit of 30 machine-centered reflections $\left(2 \theta=15-30^{\circ}\right)$. Data were collected by the ω-scan technique in the range $3 \leqslant 2 \theta \leqslant 45^{\circ}$ for 1 a and $3 \leqslant 2 \theta \leqslant 47^{\circ}$ for $\mathbf{3 d}$ on a Siemens R3m/V four-circle diffractometer with graphite-monochromated Mo-K α radiation $(\lambda=0.71073 \AA$). Two check reflections after every 198 showed no intensity reduction. All data were corrected for Lorentzpolarization and absorption. ${ }^{21}$ The metal atoms were located from Patterson maps, and the rest of the non-hydrogen atoms emerged from successive Fourier syntheses. The structures were then refined by a full-matrix least-squares procedure on F^{2}. All non-hydrogen atoms [except $\mathrm{O}(2)$ for 3 d] were refined anisotropically. All hydrogen atoms were included in calculated

Table 5 Crystal data for $\left[\mathrm{Re}^{\text {III }} \mathrm{L}^{1}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right] \mathbf{1 a}$ and $\left[\mathrm{Re}^{\mathrm{IV}} \mathrm{L}^{4}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}\right] \mathbf{3 d}$

Complex	1a	3d
Formula	$\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{PRe}$	$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{OPRe} \cdot \mathrm{H}_{2} \mathrm{O}$
M	737.04	804.49
Crystal size/mm	$0.5 \times 0.2 \times 0.15$	$0.42 \times 0.32 \times 0.2$
Crystal system	Monoclinic	Triclinic
Space group (no.)	$P 2_{1} / n(14)$	$P \mathrm{l}$ (2)
alÅ	$11.505(6)$	9.994(6)
b/Å	$13.545(5)$	$11.617(6)$
clî	18.720(11)	15.135(9)
$a 1^{\circ}$	-	76.26(4)
$\beta 1{ }^{\circ}$	97.66(4)	88.11(5)
$\gamma /{ }^{\circ}$	-	67.40(4)
U / \AA^{3}	2891(3)	1573(2)
Z	4	2
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.693	1.699
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{cm}^{-1}$	45.58	42.85
$F(000)$	1440	786
Transmission coefficient	0.56/1.00	0.53/1.00
Total reflections	4105	4733
Number unique reflections ($R_{\text {int }}$)	3801 (0.03)	4663 (0.051)
Number observed reflections [$I>2 \sigma(I)$]	3065	4054
Data/restraints/parameters	3797/0/334	4652/0/357
$R 1,{ }^{\text {a }}$ wR2 ${ }^{\text {b }}$ [$\left.I>2 \sigma(I)\right]$	0.0316, 0.0680	$0.0506,0.1319$
$R 1, w R 2$ (all data)	$0.0485,0.0851$	0.062, 0.1554
Goodness of fit on F^{2}	1.040	1.153
Maximum and mean Δ / σ	0.002/0.000	0.002/0.000
Maximum, minimum difference peaks/e \AA^{-3}	0.672, -0.849	3.087, -1.727

${ }^{a} R 1=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right| \cdot{ }^{b} w R 2=\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{\frac{1}{2}}$.
positions. The programs of SHELXTL ${ }^{\text {nN }} \mathrm{V} 5.03$ (Bruker Analytical X-ray Systems: Part Number 269-015900) were utilized. Significant crystal data are listed in Table 5. The relatively large residual maxima in the case of $\mathbf{3 d}$ occurred very close ($<1 \AA$) to the metal/chloride sites and are assigned to ghosts caused by series-termination effects. CCDC reference number 186/1224.
See http://www.rsc.org/suppdata/dt/1999/155/ for crystallographic files in .cif format.

Acknowledgements

We thank the Department of Science and Technology, Indian National Science Academy and the Council of Scientific and Industrial Research, New Delhi for financial support. Affiliation with the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore is acknowledged.

References

1 M. Menon, S. Choudhury, A. Pramanik, A. K. Deb, S. K. Chandra, N. Bag, S. Goswami and A. Chakravorty, J. Chem. Soc., Chem. Соттип., 1994, 57.
2 M. Menon, A. Pramanik, N. Bag and A. Chakravorty, Inorg. Chem., 1994, 33, 402.
3 B. K. Dirghangi, M. Menon, A. Pramanik and A. Chakravorty, Inorg. Chem., 1997, 36, 1095.
4 B. K. Dirghangi, S. Banerjee, M. Menon and A. Chakravorty, Indian J. Chem., Sect. A, 1997, 36, 249.
5 S. Banerjee, B. K. Dirghangi, M. Menon, A. Pramanik and A. Chakravorty, J. Chem. Soc., Dalton Trans., 1997, 2149.

6 B. K. Dirghangi, M. Menon, S. Banerjee and A. Chakravorty, Inorg. Chem., 1997, 36, 3595.
7 H. P. Gunz and G. J. Leigh, J. Chem. Soc. A, 1971, 2229.

8 F. Tisato, F. Refosco, C. Bolzati, A. Cagnolini, S. Gatto and G. Bandoli, J. Chem. Soc., Dalton Trans., 1997, 1421.

9 J. C. Bryan, R. E. Stenkamp, T. H. Tulip and J. M. Mayer, Inorg. Chem., 1987, 26, 2283
10 G. Rouschias and G. Wilkinson, J. Chem. Soc. A, 1967, 993; J. V. Caspar, B. P. Sullivan and T. J. Mayer, Inorg. Chem., 1984, 23, 2104; B. K. Dirghangi, Ph.D. Thesis, Jadavpur University, 1998.

11 A. S. M. Al-Shihri, J. R. Dilworth, S. D. Howe, J. Silver and R. M. Thompson, Polyhedron, 1993, 12, 2297; X. L. R. Fontaine, E. H. Fowles, T. P. Lyzell, B. L. Shaw and M. Thornton-pett, J. Chem. Soc., Dalton Trans., 1991, 1519; R. Rossi, A. Duatti and L. Magon, J. Chem. Soc., Dalton Trans., 1982, 1949.

12 M. Hirsch-Kuchma, T. Nicholson, A. Davison, W. M. Davis and A. G. Jones, J. Chem. Soc., Dalton Trans., 1997, 3185; M. Luaphon, P. E. Fanwick and R. A. Walton, Inorg. Chem., 1990, 29, 4348.

13 (a) F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, John Wiley \& Sons, New York, 5th edn., 1988, p. 64; (b) A. Pramanik, N. Bag, D. Ray, G. K. Lahiri and A. Chakravorty, Inorg. Chem., 1991, 30, 410.
14 H. Brunner and W. A. Herrmann, Chem. Ber., 1972, 105, 770; M. N. Ackermann, C. R. Barton, C. J. Deodence, E. M. Specht, S. C. Keill, W. E. Schreiber and H. Kim, Inorg. Chem., 1989, 28, 397.

15 P. Ghosh, A. Pramanik, N. Bag and A. Chakravorty, J. Chem. Soc., Dalton Trans., 1992, 1883.
16 M. Menon, A. Pramanik and A. Chakravorty, Inorg. Chem., 1995, 34, 3310.
17 H. Taube, Electron Transfer Reactions of Complex ions in Solution, Academic Press, New York, 1973, p. 73.
18 J. Chatt and G. A. Rowe, J. Chem. Soc., 1962, 4019.
19 G. Bähr and H. Z. Thamlitz, Z. Anorg. Allg. Chem., 1955, 282, 3.
20 P. Basu, S. Bhanja Choudhury and A. Chakravorty, Inorg. Chem., 1989, 28, 2680.
21 A. C. T. North, D. C. Philips and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351.

Paper 8/06346J

